Teknik Pelaksanaan Pembangunan Jalan

1. Penjelasan Umum

Pelaksanaan pekerjaan dilapangan dilakukan sepenuhnya oleh kontraktor pelaksana yang telah ditunjuk dan diawasi langsung konsultan pengawas dan Departemen Pekerjaan Umum. Pelaksanaan pekerjaan dilakukan berdasarkan atas gambar-gambar kerja dan spesifikasi tekhnik umum dan khusus yang telah tercantum dalam dokumen kontrak, rencana kerja & syarat-syarat (RKS) dan mengikuti perintah atau petunjuk dari konsultan, sehingga hasil yang dicapai akan sempurna dan sesuai dengan keinginan pemilik proyek.

2. Pekerjaan Persiapan
Pekerjaan persiapan dilaksanakan sebelum pekerjaan fisik dimulai. Adapun pekerjaan-pekerjaan yang dilaksanakan dalam pekerjaan persiapan tersebut, yaitu :

a. Pekerjaan pematokan dan pengukuran ulang
Pekerjaan pematokan dan pengukuran ulang dilaksanakan oleh kontraktor pelaksana dengan tujuan pengecekan ulang pengukuran. Pemasangan patok pengukuran untuk profil memanjang dipasang pada setiap jarak 25 meter.

b. Survey kelayakan struktural konstruksi perkerasan.
Kelayakan struktural konstruksi perkerasan dilaksanakan dengan pemeriksaan destruktif yaitu suatu cara pemeriksaan dengan menggunakan alat Benkelman.

c. Pengadan direksi keet
Untuk pengadaan direksi keet ini pihak kontraktor pelaksana membuatnya disekitar lokasi proyek. Direksi keet ini berfungsi untuk tempat beristirahat para pekerja dan penyimpanan material serta peralatan pekerjaan.

d. Penyiapan badan jalan
Pekerjaan ini meliputi pembersihan lokasi, penutupan jalan dan lainnya. Sehingga pelaksanaan proyek ini berjalan dengan lancar.

3. Pekerjaan Galian dan Timbunan
  

Gambar Struktur Pekerjaan Tanah
            

Pekerjaan Galian
  1. Pekerjaan galian adalah pekerjaan pemotongan tanah dengan tujuan untuk memperoleh bentuk serta elevasi permukaan sesuai dengan gambar yang telah direncanakan. Adapun prosedur pekerjaan dari pekerjaan galian, yaitu :
  2. Lokasi yang akan dipotong (cutting) haruslah terlebih dahulu dilakukan pekerjaan clearing dan grubbing yang bertujuan untuk membersihkan lokasi dari akar-akar pohon dan batu-batuan.
  3. Untuk mengetahui elevasi jalan rencana, surveyor harus melakukan pengukuran dengan menggunakan alat ukur (theodolit). Apabila elevasi tanah tidak sesuai maka tanah dipotong kembali dengan menggunakan alat berat (motor grader), sampai elevasi yang diinginkan.
  4. Memadatkan tanah yang telah dipotong dengan menggunakan Vibrator Roller.
  5. Melakukan pengujian kepadatan tanah dengan tes kepadatan (ujiDdensity Sand Cone test) di lapangan.
Pekerjaan galian dapat diklasifikasikan menjadi beberapa bagian :

a. Galian Biasa Commond Excavation)
Dalam pekerjaan ini dilakukan penggalian untuk menghilangkan atau membuang material yang tidak dapat dipakai sebagai struktur jalan, yang dilakukan menggunakan excavator untuk memotong bagian ruas jalan sesuai dengan gambar rencana, sedangkan pengangkutan dilakukan dengan menggunakan dump truck.

b. Galian Batuan / Padas
Pekerjaan galian batu (padas) mencakup galian bongkahan batu dengan volume 1 meter kubik atau lebih. Pada pekerjaan galian batu ini biasa dilakukan dengan menggunakan alat bertekanan udara (pemboran) dan peledekan.

c. Galian Struktur
Pada pekerjaan galian struktur ini mencakup galian pada segala jenis tanah dalam batas pekerjaan yang disebut atau ditunjukkan dalam gambar untuk struktur. Pekerjaan galian ini hanya terbatas untuk galian lantai pondasi jembatan.

Pekerjaan Timbunan dan Pemadatan

Perlu diingat sebelum pekerjaan galian maupun timbunan harus didahului dengan pekerjaan clearing dan grubbing, maksudnya adalah agar lokasi yang akan dilakerjakan tidak mengandung bahan organik dan benda-benda yang mengganggu proses pemadatan. Timbunan dilaksanakan lapis demi lapis dengan ketebalan tertentu dan dilakukan proses pemadatan.

Proses penimbunan dapat diklasifikasikan menjadi 2, yaitu :

1. Timbunan Biasa
Pada timbunan biasa ini material atau tanah yang biasa digunakan berasal dari hasil galian badan jalan yang telah memenuhi syarat.

2. Timbunan Pilihan
Pada pekerjaan timbunan ini tanah yang digunakan berasal dari luar yang biasa disebut borrowpitt. Tanah ini digunakan apabila nilai CBR tanah dari timbunan kurang dari 6%.

Proses pemadata tanah dimaksudkan untuk memadatkan tanah dasar sebelum melakukan proses penghamparan material untuk memenuhi kepadatan 95%, dengan menggunakan alat berat seperti Vibrator Roller, Dump Truck, Motor Grader.

Adapun langkah kerja dari proses pemadatan tanah, yaitu :

  1. Mengangkut material dari quary menuju lokasi dengan menggunakan Dump Truck.
  2. Menumpahkan material pada lokasi tempat dimana akan dilaksanakan pekerjaan penimbunan.
  3. Meratakan material menggunakan Motor Grader sampai ketebalan yang direncanakan. Sebagai panduan operator Grader dan vibro maka dipasang patok tiap jarak 25 m yang ditandai sesuai dengan tinggi hamparan.
  4. Memadatkan tanah denga menggunakan Vibrator Roller yang dimulai sepanjang tepi dan bergerak sedikit demi sedikit ke arah sumbu jalan dalm keadaan memanjang, sedangkan pada tikungan (alinyemen horizontal) harus dimulai pada bagian yang rendah dan bergerak sedikit demi sedikit ke arah yang tinggi, pemadatan tersebut dipadatkan dengan 6 pasing (12 x lintasan) hingga didapatkan tebal padat 20 cm hingga didapat elevasi top subgrade yang sesuai dengan rencana.
Pengujian Kepadatan Tanah
Pengujian Sand Cone
Pengujian ini bertujuan untuk mengetahui nilai kepadatan dan kadar air dilapangan. Juga bisa sebagai perbandingan pekerjaan yang akan dilaksanakan dilapangan dengan perencanaan pekerjaan.


Gambar Titik Pengambilan Sampel
Pekerjaan Lapis Pondasi Bawah
Lapisan perkerasan yang terletak antara lapis pondasi atas dan tanah dasar dinamakan lapis pondasi bawah yang berfungsi sebagai :
  1. Bagian dari konstruksi perkerasan yang menyebarkan beban roda ke tanah dasar. Dengan nilai CBR 20% dan Plastisitas indeks (PI) ≤ 10%.
  2. Material pondasi bawah relatip murah dibandingkan dengan lapisan perkerasan diatasnya.
  3. Mengurangi tebal lapisan diatasnya yang lebih mahal.
  4. Lapisan perkerasan, agar air tanah tidak berkumpul dipondasi.
  5. Lapisan pertama, agar pekerjaan dapat berjalan lancar.
  6. Lapisan untuk mencegah partikel-partikel halus dari tanah dasar naik kelapis atas. Tebal rencana lapisan pondasi bawah ini adalah 20 cm.
Lapisan pondasi agregat kelas B yang digunakan dalam proyek ini memiliki komposisi sebagai berikut :
  1. Split 5/7
  2. Split 3/5
  3. Split 2/3
  4. Abu Batu
Teknik pelaksanaan pekerjaan penghamparan dan pemadatan dari Base B adalah :
  • Pengangkutan material base B ke lokasi proyek dengan menggunakan Dump Truck.
  • Setelah sampai di lokasi, campuran ditumpuk menjadi lima sampai enam tumpukan disepanjang lokasi yang telah siap untuk dihampar base B.
  • Penghamparan material base B dilakukan dengan menggunakan alat motor grader dengan kapasitas 3,6 m. Setelah badan jalan terbentuk, kemudian dipadatkan dengan alat vibrator roller dengan kapasitas 16 ton.
  • Jika disuatu lokasi ada campuran material yang kurang baik ikatannya maka dapat ditambahkan abu batu dengan bantuan tenaga manusia untuk mengikat material tersebut ketika dipadatkan kebali dengan vibrator roller.
Untuk mengetahui apakah tebal penghamparan base B dan % kemiringan telah sesuai dengan yang direncanakan maka digunakan waterpass agar dapat menemukan elevasinya.

Peralatan

Dalam pelaksanaan pekerjaan lapis pondasi atas digunakan alat alat sebagai berikut :
  • Wheel Loader berfungsi untuk mengambil tumpukan agregat dari tempat pengambilan material, selanjutnya dimasukkan kedalam dunp truck.
  • Dump truck berfungsi untuk mengangkut material agregat base B ke lokasi pekerjaan.
  • Motor grader berfungsi untuk memadatkan material base B.
  • Water tank truck berfungsi untuk menyiram agregat base B setelah penghamparan. 

Bahan dan Material

Agregat baru pecah kelas B yang sesuai dengan persyaratan (table agregat base B)
 

Tabel Gardasi Agregat Kelas A dan Kelas B
Nomor Mm Kelas A Kelas B
2 in 50 100 100
11/2 in 37.5 100 88 - 95
1 in 25 65 - 81 70 - 85
3/8 in 9.5 42 - 60 30 - 65
# 4 4.75 27 - 45 25 - 55
# 10 2 Nop-25 15 - 40
# 40 0.425 6 – 16 8 – 20
# 200 0.075 0 - 8 2 – 8

Tabel Karakteristik Agregat Kelas A dan Kekas B
Sifat Material Sifat Kelas A Sifat Kelas B
Nilai Abrasi Agregat Kasar ( AASTHO T 96 - 87 ) 0 - 40% 0 - 40%
Plasticity Index ( AASTHO T 90 - 87 ) 0 - 6 4 – 10
Batas Cair ( AASTHO T 89 - 90 ) 0 – 25 -
CBR ( AASTHO T180 ) 90 min 35 min
Hasil Kali PI dengan % lolos ayakan no. 200 25 maksimum -


Pengawasan Pekerjaan

Pengawasan pekerjaan dilaksanakan olek konsultan pengawas. Hal ini dilakukan untuk menjamin pekerjaan yang dilakukan oleh kontraktor sebagai pelaksana proyek, apakah sesuai dengan ketentuan yang terdapat dalam spesifikasi.

Ketentuan ketentuan pelaksanaan pekerjaan yang sesuai dengan spesifikasi adalah sebagai berikut :
  • Penghamparan lapis pondasi agregat, baik kelas A maupun kelas B tidak boleh mempunyai ketebalan kurang dari dua kali ukuran maksimum bahan.
  • Penghamparan lapis pondasi kelas A maupun kelas B tidak boleh lebih dari 20 cm dalam keadaan loose, hal ini dapat mempengaruhi proses pemadatan sehingga pemadatan yang dilakukan tidak mencapai keadaan optimal.
  • Permukaan lapis pondasi agregat harus rata sehingga air tidak dapat menggenang akibat permukaan yang tidak rata. Deviasi maksimum untuk kerataan permukaan adalah 1 cm.
  • Toleransi terhadap tebal total lapis pondasi agregat adalah 1 cm dari tebal rencana.
  • Lapis pondasi yang terlalu kering atau terlalu basah untuk pemadatan yaitu kurang dari 1% atau lebih dari 3% pada kadar air optimum, diperbaiki dengan cara menggali dan mengganti dengan bahan yang memenuhi syarat kadar air tersebut.

Pembebanan Pada Struktur Bangunan

Pembebanan pada struktur bangunan merupakan salah satu hal yang terpenting dalam perencanaan sebuah gedung. Kesalahan dalam perencanaan beban atau penerapan beban pada perhitungan akan mengakibatkan kesalahan yang fatal pada hasil desain bangunan tersebut. Untuk itu sangat penting bagi kita untuk merencanakan pembebanan pada struktur bangunan dengan sangat teliti agar bangunan yang didesain tersebut nantinya akan aman pada saat dibangun dan digunakan.

Berikut saya akan menjelaskan tentang pembebanan pada struktur bangunan.

Definisi utama beban adalah : sekelompok gaya yang akan bekerja pada suatu luasan struktur.
Setiap struktur yang akan direncanakan sebenarnya telah ditentukan oleh kode – kode pembebanan yang telah ditetapkan berupa standar nasional Indonesia (SNI)

Seberapa penting pembebanan ini ?





Kode Pembebanan
  • PPUG 1987 (Peraturan Pembebanan Gedung)
  • ASCE 2005 (Gedung Lengkap)
  • SNI 1726 -2002 (Perencanaan Gempa)
  • SNI T02 -2005 (Pembebanan Jembatan)
  • SNI 03 – 2833 -200x (Gempa dinamis jembatan)

Kode Perencanaan
  • SNI 03 1729 2002 Struktur Baja
  • SNI 03 xxxx 2002 Struktur Beton
  • SNI 03 xxxx 2002 Struktur Kayu
  • SNI T03 – 2005 Jembatan Baja
  • SNI T12 – 2004 Jembatan Beton
Beban Pada Gedung

Pembebanan pada Gedung biasanya terdiri dari :
  • Beban Mati
  • Beban Hidup
  • Beban Angin
  • Beban Gempa
  • Beban Additional (Tergantung kondisi dan situasi)
Beban Mati
  • Beban Mati : Beban yang tetap berada di gedung
  • dan tidak berubah ubah
  • Beban Balok (Profil x γ )
  • Beban Kolom (Profil x γ )
  • Beban Plat (Profil x γ )
  • Beban Dinding ( tinggi x berat /m2)
  • PPUG 
  • => 2.5 KN /m2 untuk susunan ½ bata
Beban Hidup

Beban Hidup : adalah beban yang berubah ubah pada struktur dan tidak tetap. Termasuk beban berat manusia dan perabotnya atau beban menurut fungsinya
  • Ruang Kantor
  • Ruang Pertunjukkan
  • Parkir
Beban Angin

Beban angin adalah beban yang bekerja horisontal / tegak lurus terhadap tinggi bangunan. Untuk gedung – gedung yang dianggap tinggi angin harus diperhitungkan bebannya karena berpengaruh terhadap story drift/simpangan gedung dan penulangan geser.
Kode perencanaan yang dianggap paling tepat saat ini untuk Indonesia adalah kode ASCE 7 2005 chapter 6.
Beban Angin sangat dipengaruhi faktor topografi dan luasan bangunan.

Beban Gempa

Beban Gempa adalah beban yang disebakan oleh bergeraknya tanah akibat proses alami.
Beban Gempa Terdiri dari 2 konsep yaitu desain statis dan desain dinamis
Untuk bangunan tinggi beban gempa harus diterapkan sedemikian rupa sehingga bangunan harus mampu menahan
gempa ulang 50 tahun.
Pada Desain Gempa inilah nilai daktalitas suatu bangunan dapat ditentukan

Beban additional

Beban additional adalah beban yang memiliki nilai lebih besar dari nilai beban mati atau beban hidup dan merupakan bagian dari struktur yang harus ditinjau ulang.
Contoh beban additional adalah :
  • Tandon air di atas bangunan
  • Kuda – Kuda
  • Tangga
  • Lift
  • Arsitektur seperti sunscreen
Aplikasi Beban Mati dan Hidup

Aplikasi Beban terdiri dari beberapa konsep.
  • Konsep Konvensional
=> Beban disini akan diperhitungkan terlebih sebagai Trapesium dan Segitiga
  • Konsep Portal Ekuivalen
=> Beban disini akan dibagi menjadi beban merata dan dianggap bekerja sepanjang jalur pembebanan masing - masing
  • Konsep Direct
=> Beban disini akan diterapkan langsung sesuai model

Penerapan Beban Mati

Dalam kasus desain, pertama bagian bagian struktur akan diprakirakan pada sub preliminary desain
Balok (1/10 -1/14) Bentang Kolom diprakirakan berdasarkan rumus tertentu atau minimal equal dengan b balok atau lebih besar dari 250 mm yang disyaratkan Plat diprakirakan tebalnya terhadap fungsi bangunan atau mengacu pada prasyarat Kembali, jika kasusnya adalah desain maka berat sendiri dari balok, kolom , plat akan diperhitungkan dalam simulasi hingga desain equal dengan model Jika analisa (sudah ada) maka berat sendiri dapat diperlakukan sebagai beban yang diperhitungkan atau juga dihitung oleh perangkat lunak Beban dinding harus diterapkan ke seluruh balok atau mengacu pada gambar arsitektur

Penerapan Beban Hidup

Beban hidup diterapkan ke seluruh lantai yang ada berdasarkan pada fungsinya.

Penerapan Beban Angin

  • Beban Angin diterapkan pada sumbu X dan Y atau Utara – Selatan dan timur – Barat
  • Beban adalah beban garis

Penerapan Beban Gempa
  • Beban Gempa diterapkan ke sumbu X dan Y atau S-N dan E-W
  • Beban berupa beban titik


Kombinasi

  • U = 1,4 D (4)
  • U = 1,2 D + 1,6 L + 0,5 (A atau R) (5)
    U = 1,2 D + 1,0 L ± 1,6 W + 0,5 (A atau R) (6)
    U = 0,9 D ± 1,6 W (7)
    U = 1,2 D + 1,0 L ± 1,0 E (8)
    60 dar i 278
    U = 0,9 D ± 1,0 E (9)
    U = 1,4 (D + F) (10)
    U = 1,2(D +T ) + 1,6L + 0,5(A atau R) (11)

8) Untuk perencanaan daerah pengangkuran pasca tarik harus digunakan faktor beban 1,2
terhadap gaya penarikan tendon maksimum.
9) Jika pada bangunan terjadi benturan yang besarnya P, maka pengaruh beban tersebut
dikalikan dengan faktor 1,2.

  • Digunakan Nilai yang paling besar.
  • YANG MANA ?
  • Perangkat lunak telah menyertakan fasilitas pencarian nilai terbesar
Sumber :  http://kampuzsipil.blogspot.com

Tahapan Pembuatan Peta Serta Pengolahan data Ukur Tanah

Pengukuran Kerangka Peta


a. Kerangka horisontal

Sesuai dengan keadaan luas daerah yang akan dipetakan, maka kerangka peta yang digunakan dalam praktikum adalah berupa poligon. Poligon dibagi menjadi poligon terbuka dan tertutup. Dalam proses pembuatan kerangka horisontal poligon terbuka/tertutup diikatkan pada titik pasti yang telah diketahui koordinatnya.

Pengukuran Kerangka Horizontal
 
Keterangan :
1,2,3,…                       : nomor titik
b1,b2,b3,…                : sudut dalam poligon
a1, a2, a3,…              : sudut luar poligon
a12,a23,a34,…          : azimuth
Rumus-rumus yang harus dipenuhi:
1.      Syarat sudut
Jumlah sudut dalam poligon        : Sbd    = (n – 2) x 180o
Jumlah sudut luar poligon            : Sb      = (n + 2) x 180o
Dengan                                         : n         = jumlah titik poligon
                                                 Sb      = jumlah sudut poligon

2.      Syarat sisi
Jumlah proyeksi pada sumbu y                          = S(d sin a)        = 0
Jumlah proyeksi pada sumbu  x                         = S(d cos a)       = 0

3.      Azimuth awal
Pengukuran azimuth didasarkan pada arah utara magnet bumi atau azimuth kompas.

4.      Menghitung azimuth masing-masing titik
Untuk poligon sudut dalam   a(n,n+1) = a(n – 1, n) + 180o - bd
Untuk poligon sudut luar       a(n,n+1) = a(n – 1, n) - 180o + b
Dengan:               n    = nomor titik
                a    = azimuth
b        = sudut luar/dalam poligon

Cara perhitungan poligon dilakukan menurut tetapan:
1.      Menjumlahkan sudut dari sudut dalam atau luar yang diukur.
2.      Menentukan besar penyimpangan (b) kemudian memberikan koreksi pada tiap titik.
3.      Menghitung sudut jurusan didasarkan pada sudut poligon yang telah terkoreksi.
4.      Menghitung proyeksi titik ke sumbu x dan y, yaitu d sin a dan d cos a.
5.      Menentukan penyimpangan jumlah jarak proyeksi dan memberikan koreksi pada tiap-tiap jarak tertentu

b. Kerangka vertikal

Kerangka vertikal diukur dengan menggunakan alat waterpass. Pekerjaan waterpassing atau pengukuran beda tinggi, yaitu:
1. Pengukuran beda tinggi di suatu tempat.
2. Pengukuran profil/penampang tanah pada arah melintang.

Beda tinggi antara dua titik adalah selisih tinggi dalam vertikal atau jarak terpendek antara dua nivo yang melalui titik tersebut. Penampang adalah tampang yang arahnya melintang. Pengukuran beda tinggi diperlukan untuk menghitung volume galian dan timbunan tanah.
Dalam pembuatan peta topografi digunakan pengukuran memanjang untuk ketinggian titik detail dan dari hasil pengukuran didapat beda tinggi suatu titik ikat (poligon) terhadap titik ikat lainnya. Beda tinggi yang didapat nantinya akan digunakan sebagai data dalam pembuatan dan penggambaran peta topografi.
 
Pengukuran beda tinggi antara dua titik dapat dilakukan dengan berbagai cara, antara lain:
1. Metode menyipat datar 
Pengukuran Beda Tinggi dengan Metode Menyipat Datar
 
Metode ini menggunakan waterpass sebagai alat ukur.
DHAB          = BTA – BTB
HB              = HA + DHAB

Dengan      :
DHAB          : beda tinggi antara titik A dan titik B
BT              : Bacaan benang tengah
H                : Ketinggian/elevasi
                                              
2. Metode barometris



Pengukuran dengan Metode Barometris

Metode barometris menggunakan barometer sebagai alat ukur. Metode ini memakai prinsip menggunakan tekanan udara pada tempat yang akan dicari ketinggiannya. Untuk mengetahui ketinggian dari muka air laut rata-rata. Setelah ketinggian diketahui maka beda tinggi yang diperoleh kurang akurat, karena tergantung dari suhu, kelembaban udara, dan juga gaya tarik bumi.


Dalam pemilihan titik detail harus disesuaikan dengan kondisi lapangan,, yaitu jangan terlalu jarang maupun terlalu rapat. Jika titik terlalu jarang maka hasil peta situasi tidak akan mencerminkan kondisi yang sebenarnya, namun jika terlalu rapat, kurang efisien. Untuk daerah datar cukup diambil beberapa titik saja tetapi untuk tanah bergelombang diambil titik efektifnya, untuk parit diambil data tentang kedalaman dan lebarnya.

Agar pengambilan titik detail lebih mudah, mengenai sasaran, maka titik tersebut dapat dikelompokan sebagai berikut:
a.       semua jalan (meliputi: jalan raya, jalan kecil, dll)
b.      saluran-saluran air, batas sungai, batas pantai
c.       jembatan, gardu listrik, tugu, monumen, dll
d.      lapangan olahraga, lapangan terbang, persawahan, permukiman
e.       kantor pemerintahan, kantor polisi, bank, pasar, toko, dll
f.       batas-batas propinsi, kabupaten, kecamatan, kelurahan, dll

Pada setiap pengukuran suatu titik detail, perhitungan jarak dan beda tinggi dilakukan dengan cara tachimetri atau disesuaikan dengan alat yang digunakan, berikut Pengukuran Menggunakan Theodolite 
Pengukuran Beda Tinggi dengan Cara Tachimetri

 
Jd (jarak datar)             = Jm cos m
                                      = (BA – BB) x 100 x cos2 m

Beda tinggi = DH         = ½ (BA – BB) x 100 sin 2m + i– BT
Dengan:
i               = tinggi alat
BA          = bacaan benang atas
BB          = bacaan benang bawah
BT           = bacaan benang tengah
m             = sudut miring
z              = sudut zenith = 90o - m
DH          = beda tinggi antara titik A dan B
Jd            = jarak datar
Jm           = jarak miring

3. Metode trigonometri
Pengukuran dengan Menggunakan Cara Trigonometri
Pada metode ini alat yang digunakan adalah theodolit.
Beda tinggi antara A dan B = Jd tan m
Dengan:
Jd = jarak datar
z   = sudut zenith
m  = sudut miring                        

c. Data yang harus diukur

Data yang harus dicari tergantung dengan alat yang digunakan. Data yang perlu diukur dalam kaitannya dengan pengukuran kerangka horisontal dengan menggunakan theodolit adalah benang atas, benang bawah, benang tengah, azimuth, zenith, tinggi alat dan sketsa pengukuran, sedangkan data yang perlu diambil untuk kerangka vertikal adalah data dari penggunaan waterpass, yaitu benang atas, benang bawah, dan benang tengah.

Pengukuran Titik Detail

Titik detail adalah semua penampakan yang ada di muka bumi baik alamiah maupun buatan manusia. Pada pengukuran ini tidak mungkin dilakukan secara lengkap dan terperinci, oleh karena itu harus diambil titik detail seefektif mungkin yang dapat mewakili dalam penggambaran peta situasi nantinya.

a.   Cara-cara pengambilan titik detail

Dalam pengukuran titik detail dapat dilakukan dengan berbagai cara, antara lain :
1.       Pengukuran Titik Detail dengan Cara Memancar

Cara ini dipakai jika jarak antara titik pasti berdekatan. A dan B adalah titik pasti. Dari gambar di atas pesawat diletakan di titik A lalu diambil a1, a2, a3,…, sedangkan arah sumbu masing-masing menjauhi titik A, begitu juga titik B.
2.   Pengukuran Titik Detail dengan Cara Melompat

Adakalanya kita mengalami kesulitan jika menggunakan metode memancar dalam mengukur titik detail karena titik pasti berjauhan, sehingga diperlukan cara melompat.

3. Pengukuran Titik Detail dengan Cara Grid
Dilakukan dengan membuat grid-grid tiap jarak tertentu.

b. Data yang harus diukur

Data pengukuran titik detail yang diperlukan adalah azimuth, zenith, benang atas, benang bawah, benang tengah, dan tinggi alat serta sketsa pengukuran titik tersebut. Data tersebut digunakan untuk mencari jarak dan beda tinggi antara tempat alat didirikan dengan titik detail yang diukur.
Sumber :  http://kampuzsipil.blogspot.com