Pages

LOGARITMA

Logaritma merupakan fungsi invers dari eksponen. 



 
Dengan = bilangan pokok ,  yang merupakan invers (cerminan dari f(x) terhadap garis y = b) dari fungsi eksponen  , sehingga mempunyai invers 


I. Sifat-sifat Logaritma
a. Sifat Perkalian Logaritma
Perkalian logaritma samadengan penjumlahan logaritma dengan basis tetap.
b.Sifat Pembagian Logaritma
Jika hasil logaritma merupakan pembagian,hasilnya dapat diuraikan menjadi operasi pengurangan bilangan logaritma dengan basis tetap.
.
c. Sifat Perpangkatan Logaritma
Hasil operasi berupa bilangan logaritma berpangkat, dapat diuraikan sbb:
d. Sifat Penarikan Akar
Jika ada hasil operasi logaritma yang berbentuk akar, ubahlah terlebih dahulu menjadi bentuk pangkat untuk mempermudah penyelesaianya.

Beberapa Sifat Logaritma yang lain:



II. Persamaan Logaritma



III. Pertidaksamaan Logaritma

GEOMETRI TRANSFORMASI

1. Pengertian Transformasi Transformasi T dibidang adalah suatu pemetaan titik pada suatu bidang ke himpunan titik pada bidang yang sama. 
Jenis-jenis transformasi yang dapat dilakukan antara lain :

  1. Translasi (Pergeseran)
  2. Refleksi (Pencerminan)
  3. Rotasi (Perputaran)
  4. Dilatasi (Perkalian)

2. Translasi dan Operasinya
Translasi (pergeseran) adalah pemindahan suatu objek sepanjang garis lurus dengan arah dan jarak tertentu.
 
Jika translasi  memetakan titik P (x, y) ke titik P’(x’, y’) maka x’ = x + a dan y’ = y + b atay P’ (x + a, y + b ) ditulis dalam bentuk : 

 
Contoh : Tentukan koordinat bayangan titik A (-3, 4) oleh translasi 
Jawab : 
Jawab :
A’ = ( -3 + 3, 4 + 6)
A’ = (0, 10)

3. Refleksi (Pencerminan) 
a. Pencerminan terhadap sumbu x
Matriks percerminan :
b. Pencerminan Terhadap sumbu y 
Matriks Pencerminan:

c. Pencerminan terhadap garis y = x 
Matriks Pencerminan
d. Pencerminan terhadap garis y = -x 
Matriks Pencerminan:
e. Pencerminan terhadap garis x = h 
Matriks Pencerminan: 
Sehingga:
f. Pencerminan terhadap garis y=k 
Matriks Pencerminan : 
Sehingga:


g. Pencerminan terhadap titik asal O (0, 0)
Matriks Pencerminan : 
Sehingga: 
h. Pencerminan terhadap garis y = mx dimana m = tan q
Contoh :
Tentukan bayangan persamaan garis y = 2x – 5 oleh translasi 
Jawab :
Ambil sembarang titik pada garis y = 2x – 5, misalnya (x, y) dan titik bayangan oleh translasi  adalah (x’, y’) sehingga ditulis 
Atau
x’ = x + 3 x = x’- 3 ..... (1)
y’ = y – 2  y = y’ + 2 ......(2)
Persamaan (1) dan (2) disubtitusikan pada persamaan garis semula, sehingga :
y = 2x – 5
y’ + 2 = 2 (x’- 3) – 5
y’ = 2x’ – 6 – 5 – 2
y’ = 2x’ – 13
Jadi persamaan garis bayangan y = 2x – 5 oleh translasi adalah y = 2x – 13 .

SOAL LATIHAN MATEMATIKA INTEGRAL



Penyelesaian :
 jawab (C)


Penyelesaian :
Fungsi kurva dapat dicari dengan integral sebagai berikut :

Untuk mencari nilai C kita dapat menghitungnya dengan kenyataan bahwa fungsi melalui titik (1, 4) atau f(1) = 4, sehingga :
Sehingga fungsi kurva dapat kita tulis :

Jawab (C)
Penyelesaian :
Kita menyelesaikan integral ini dengan mengingat rumus trigonometri berikut :
==========================

==========================
Dengan menggunakan rumus di atas, maka

Sehingga integralnya dapat kita hitung sebagai berikut :

Misalkan y=8x maka dy=8dx atau dx=(1/8)dy, jadi

Jawab (C)


Penyelesaian :

Untuk menyelesaikan integral ini, kita mengingat rumus-rumus berikut :
===========================

===========================
atau dapat juga ditulis :
===========================

===========================
Jadi,
Dan integral dapat ditulis sebagai berikut :

Jawab (D)


Penyelesaian :

Kiita dapat menyelesaikan integral ini dengan substitusi karena , sehingga jika kita misalkan , akan kita peroleh  atau  atau .
Sehingga integral dapat kita tulis :

Jawab (A)


Penyelesaian :
Jawab (C)
Penyelesaian :

Jawab (C)

Penyelesaian :

Sehingga 2a-1=0 ==> a=1/2, atau
a+2=0 ==> a=-2.
Jawab (C)

Penyelesaian :


Jawab (B)
Penyelesaian :

Jawab (D)
Penyelesaian :
Dari persamaan (i) dan (ii) kita peroleh dengan eliminasi,

Jawab (B)