Gelombang Laut

Gelombang adalah getaran yang merambat. Bentuk ideal dari suatu gelombang akan mengikuti gerak sinusoide. Selain radiasi elektromagnetik, dan mungkin radiasi gravitasional, yang bisa berjalan lewat vakum, gelombang juga terdapat pada medium (yang karena perubahan bentuk dapat menghasilkan gaya memulihkan yang lentur) di mana mereka dapat berjalan dan dapat memindahkan energi dari satu tempat kepada lain tanpa mengakibatkan partikel medium berpindah secara permanen; yaitu tidak ada perpindahan secara masal. Malahan, setiap titik khusus berosilasi di sekitar satu posisi tertentu.
Suatu medium disebut:
1.    linear jika gelombang yang berbeda di semua titik tertentu di medium bisa dijumlahkan,
2.    terbatas jika terbatas, selain itu disebut tak terbatas
3.    seragam jika ciri fisiknya tidak berubah pada titik yang berbeda
4.    isotropik jika ciri fisiknya “sama” pada arah yang berbeda
Gelombang laut telah menjadi perhatian utama dalam catatan sejarah. Aristoteles (384-322 SM) mengamati hubungan antara angin dan gelombang. Namun, sampai sekarang, pengetahuan tentang mekanisme pembentukan gelombang dan bagaimana gelombang berjalan di lautan masih belum sempurna. Ini sebagian karena pengamatan karakteristik  gelombang di laut sulit dilakukan dan sebagian karena model matematika tentang perilaku gelombang didasarkan pada dinamika fluida ideal, dan perairan laut tidak sepenuhnya ideal. Tujuan dari bab ini adalah gambaran secara garis besar aspek kualitas dari gelombang laut dan menyelidiki beberapa hubungan sederhana dari dimensi gelombang dan karakteristiknya. Dimulai dari penentuan dimensi gelombang laut yang ideal dan gambarannya dalam terminologi berikut.

Gambar 1. Profil vertical dari dua gelombang laut ideal, menunjukkan dimensi linier dan bentuk sinusoidalnya (Sumber: The Open University, 2004).
Tinggi gelombang (H) adalah perubahan tinggi secara vertikal antara puncak gelombang dan lembahnya. Tinggi gelombang adalah dua kalinya amplitudo gelombang (a). Panjang gelombang (L) adalah jarak antara dua rangkaian puncak gelombang (atau memalui 2 puncak berturut-turut). Kecuraman  idefinisikan sebagai pembagian tinggi gelombang dengan panjang gelombang (H/L) seperti terlihat dalam Gambar 1, kecuraman tidak sama dengan kemiringan/ slope antara puncak gelombang dan lembahnya.
Interval waktu antara dua puncak yang berurutan yang melalui suatu titik tetap disebut sebagai perioda (T), dan diukur dalam detik. Jumlah puncak (atau jumlah lembah) yang melewati suatu titik tetap tiap detik disebut frekuensi (f).
PENGERTIAN GELOMBANG
Gelombang merupakan kejadian yang biasa terjadi dalam kehidupan seharihari. Contohnya suara, gerakan tali gitar, riak-riak di kolam dan ombak di laut. Karakteristik gerakan gelombang :
(i)    Gelombang mentransfer gangguan dari satu bagian material ke bagian lainnya
(ii)    Gangguan tersebut dirambatkan melalui material tanpa gerakan dari material tersebut (gabus hanya naik dan turun diatas riak, tetapi mengalami sangat sedikit perubahan bentuk dalam perjalanannya dalam kolam)
(iii)    Gangguan tersebut dirambatkan tanpa ada perubahan dari bentuk gelombang ( riak menunjukkan sangat sedikit perubahan dalam perjalanannya dalam kolam)
(iv)    Gangguan-gangguan tersebut dirambatkan dengan kecepatan yang tetap.
Jika material sendiri tidak dipindahkan /ditranspor oleh perambatan gelombang kemudian apa yang akan dipindahkan? Jawabannya “energi”, merupakan definisi yang tepat dari gerakan gelombang – sebuah proses dimana energi ditransporkan/ disebarkan melalui material tanpa perpindahan yang signifikan dari material itu sendiri. Jadi jika energi, bukan material yang dipindahkan, bagaimana kejadian alami dari pengamatan pergerakan ketika riak menjalar dalam kolam?
Ada dua aspek yang harus diperhatikan : Pertama perkembangan gelombang (yang telah dicatat), dan kedua, pergerakan partikel air. Pengamatan efek riak pada gabus menunjukkan bahwa partikel air bergerak keatas dan kebawah, tetapi pengamatan yang lebih dekat lagi mengungkapkan bahwa kedalaman air lebih besar daripada tinggi riak. Gabus digambarkan hampir bulat dalam bidang vertikal, sejajar dengan arah pergerakan gelombang.. Dalam pengertian lebih umum lagi, partikel dipindahkan dari posisi seimbang dan kemudian kembali ke posisi tersebut. Selanjutnya partikel-partikel tersebut mengalami perubahan gaya dan pemulihan kembali. Gaya gaya ini biasanya digunakan untuk menggambarkan jenis-jenis gelombang.
Jenis-jenis Gelombang
Semua gelombang dapat dianggap sebagai gelombang berjalan, dimana energi bergerak melalui atau permukaan material.
Terdapat juga gelombang berdiri contohnya senar gitar, yaitu jumlah gelombang berjalan dengan dimensi yang sama, tetapi berjalan dalam arah yang berlawanan.
Gelombang yang berjalan melalui material disebut Gelombang Badan, contoh gelombang badan adalah gelombang seismik P & S dan gelombang suara. Tetapi perhatian kita dalam bab ini adalah gelombang permukaan. Gelombang permukaan yang paling familiar adalah yang terjadi dibatas antara dua badan fluida, contohnya gelombang dapat terjadi pada batas antara dua lapisan diperairan laut yang berbeda densitasnya. Karena batas tersebut adalah suatu permukaan sehingga disebut gelombang permukaan, tetapi para ahli oseanografi biasanya menyebutnya gelombang internal/dalam. Osilasi lebih mudah terbentuk pada batas dalam dari pada permukaan laut, karena perbedaan densitas antara dua lapis air lebih kecil daripada batas air dan udara. Karena itu hanya diperlukan sedikit energy untuk membangkitkan gelombang internal daripada gelombang permukaan dengan amplitudo yang sama. Gelombang internal berjalan lebih lambat daripada gelombang permukaan. Dan gelombang internal ini penting dalam proses percampuran vertikal dalam laut. Gelombang permukaan disebabkan oleh gaya-gaya dari gerakan relatif antara dua lapisan, sebagai contoh tiupan angin di laut, atau oleh gaya eksternal yang mengganggu fluida.
Contoh dari gaya-gaya internal adalah tetesan hujan di kolam, gempa bumi, gaya gravitasional dari matahari dan bulan.
Gelombang yang disebabkan oleh gaya periodik , seperti efek matahari dan bulan menyebabkan pasang surut, yang mempunyai perioda sama dengan gaya-gaya penyebabnya. Kebanyakan gelombang yang lain, merupakan hasil dari gangguan tak periodik. Partikel air dipindahkan dari posisi seimbang dan untuk mempertahankan ke posisi tersebut memerlukan gaya pemulih. Dalam kasus gelombang air, gerakan partikel hasil dari gaya pemulih bekerja pada suatu siklus gelombang memberikan gaya perpindahan bekerja untuk siklus
berikutnya.
Perpindahan dan pemulihan kembali memberikan karakteristik gerakan gelombang osilatori, dengan bentuk sederhana karakteristik sinusoidal (Gambar 1 dan 6), dan biasanya mengacu pada gerakan harmonic sederhana. Pada kasus gelombang permukaan ada dua gaya pemulih yang mempertahankan gelombang berjalan.
1. Gaya gravitasional bumi
2. Tegangan permukaan, dimana kecendrungan dari molekul air untuk menempel bersama dan mengahdirkan permukaan paling terkecil ke udara. Dalam kasus pada gelombang air, jika kulit elastik yang lembut direntangkan/ditarik melalui permukaan air.
Gelombang air yang diakibatkan oleh gaya-gaya ini dalam kasus gelombang dengan panjang gelombang kurang dari 1,7 cm, gaya yang utama adalah tegangan permukaan, yang dikenal sebagai gelombang kapiler. Gaya kapiler adalah penting dalam konteks remote sensing dilaut. Namun perhatian utama para ahli oseanografi adalah gelombang permukaan dengan panjang gelombang lebih besar dari 1,7 cm, dan gaya utamanya adalah gravitasi, karena itu disebut gelombang gravitasi. Gambar 2. menggambarkan beberapa jenis gelombang dan penyebabnya.
 
Gambar 2. Jenis-jenis gelombang permukaan, menunjukkan hubungan antara panjang gelombang, frekuensi, gaya perpindahan dan jumlah relative energy dari masing masing gelombang (Sumber: The Open University, 2004).
Tidak semua gelombang dipindahkan dalam bidang vertikal, karena atmosfer dan laut berada dalam rotasi bumi, variasi vortisitas planetary terhadap lintang menyebabkan defleksi atmosferik dan aurs laut, dan
memberikan gaya pemulih yang memberikan osilasi dalam bidang horizontal, sehingga arus barat /timur cenderung berbelok kembali dan terus pada lintang seimbang. Gelombang skala besar ini disebut sebagai
gelombang Rossby atau planetary, dan mungkin terjadi sebagai gelombang permukaan atau gelombang internal.
Gelombang Laut yang dibangkitkan oleh Angin
Pada tahun 1779, Benyamin franklin megatakan, “Udara yang bergerak yaitu angin, melewati permukaan yang halus, akan mengganggu permukaan, dan menjadikan permukaan tersebut bergelombang, jika angina bertiup terus, maka menjadi elemen gelombang”.
Dengan kata lain, jika dua lapisan fluida yang mempunyai perbedaan kecepatan bertemu, maka akan ada tegangan friksi diantara keduanya, maka akan ada transfer energi. Di permukaan laut, kebanyakan energi yang ditransfer merupakan hasil dari gelombang, namun dengan proporsi yang kecil merupakan hasil dari arus yang dibangkitkan oleh angin. Pada tahun 1925 Harold Jeffrey S. menganggap gelombang memperoleh energi dari angin karena perbedaan tekanan yang disebabkan efek dari puncak gelombang. (Gambar 3) Walaupun hipotesa dari Jeffrey gagal menjelaskan bentuk gelombang yang sangat kecil, tapi berlaku jika :
1. Kecepatan angin lebih besar dari kecepatan gelombang.
2. Kecepatan angin melebihi 1 m/s
3. Gelombang cukup curam untuk memberikan efek berlindung /naungan.
Secara empiris, dapat ditunjukkan bahwa efek naungan akan maksimum jika kecepatan angin diperkirakan tiga kalilebih besar dari kecepatan gelombang. Di laut yang terbuka, gelombang yang dibangkitkan oleh angina mempunyai kecuraman (H/L) sekitar 0,03 – 0,06. Secara umum, semakin besar perbedaan kecepatan dan gelombang, semakin curam gelombangnya. Namun seperti yang kita lihat kemudian, kecepatan gelombang di laut dalam tidak ada hubungannya dengan kecuraman gelombang, tetapi panjang gelombangnya, semakin besar panjang gelombang, semakin cepat gelombang berjalan.

Gambar 3. Model pembentukan gelombang Jeffrey (Sumber: The Open University, 2004)
Perhatian urutan kejadian jika, setelah cuaca tenang. Angin mulai bertiup, sampai bertiup kencang untuk beberapa waktu. Petumbuhan gelombang yang tidak signifikan terjadi jika kecepatan angin melebihi 1 m/s. kemudian gelombang curam yang kecil akan terbentuk dengan meningkatnya kecepatan angin. Bahkan sampai angin mencapai kecepatan yang konstan, gelombang terus tumbuh dengan kenaikan yang cepat sampai mencapai ukuran dan panjang gelombang (dan kemudian kecepatan) yang sebanding dengan 1/3 kecepatan angin. Dibawah posisi ini, gelombang terus meningkat ukurannya, panjang gelombang dan kecepatannya, tetapi dengan laju yang berkurang. Selanjutnya mungkin diharapkan gelombang tumbuh terus sampai kecepatan yang sama dengan kecepatan angin, namun dalam prakteknya pertumbuhan gelombang berhenti pada saat kecepatan gelombang masih dibawah kecepatan angin, hal ini karena :
1.    Beberapa energi angin ditransferkan ke permukaan laut melalui gaya tangensial, yang kemudian menghasilkan arus permukaan
2.    Beberapa energi angin didisipasikan/dikurangi oleh gesekan.
3.    Energi hilang dari gelombang lebih besar sebagai hasil dari While Chapping yaitu pecahnya puncak gelombang karena dibawa kedepan oleh angin yang lebih cepat dari perjalanan gelombang itu sendiri.
Banyak pengurangan/disipasi energi selama while Chapping dikonversikan menjadi momentum air,  memperkuat arus permukaan yang diawali oleh proses 1 diatas.
Tinggi Gelombang dan Kecuraman Gelombang
Tinggi gelombang dipengaruhi oleh komponen-komponen gelombang, yaitu perbedaan frekuensi dan amplitudo. Dalam teori, jika tinggi dan frekuensi gelombang diketahui, adalah sangat memungkinkan untuk memprediksi secara akurat tinggi dan frekuensi gelombang terbesar. Dalam prakteknya hal ini tidak mungkin. Gambar 4 menggambarkan kisaran tinggi gelombang yang terjadi dalam waktu yang pendek pada suatu lokasi – tidak ada pola yang jelas untuk variasi tinggi gelombang.

Gambar 4. Rekaman gelombang pada satu titik (Sumber: The Open University, 2004).
Untuk aplikasi penelitian gelombang, diharuskan memilih sebuah tinggi gelombang yang merupakan karakteristik dari kondisi laut. Yang digunakan oleh para ahli oseanografi adalah tinggi gelombang signifikan atau H1/3 , yaitu tinggi gelombang rata-rata dari 1/3 tinggi gelombang yang tertinggi dari semua gelombang yang terjadi dalam perioda waktu tertentu. Dalam pencatatan gelombang, terdapat juga tinnggi gelombang maksimum , Hmax . Prediksi Hmax untuk perioda waktu tertentu merupakan harga yang penting dalam desain bangunan seperti halangan banjir, instalasi pelabuhan, dan flatform pengeboran. Untuk membangun bangunan ini tingkat keselamatan yang tinggi seharusnya tidak mahal, tetapi dengan perkiraan Hmax yang salah dapat menyebabkan konsekuensi yang tragis. Namun perlu diperhatikan kejadian yang acak dari Hmax . Gelombang dengan Hmax (25 th) akan terjadi 1 kali setiap 25 tahun. Ini tidak berari gelombang tersebut otomatis terjadi dalam 25 tahun sekali mungkin dengan perioda waktu yang
lebih lama tidak terjadi gelombang tersebut. Jika kecepatan angin meningkat, maka H1/3 dalam fully  developed sea meningkat. Hubungan antara kondisi laut, H1/3 dan kecepatan angina dinyatakan oleh skala Beaufort (Gambar 5). Skala Beaufort dapat dipergunakan untuk memperkirakan kecepatan angin laut, tetapi hal ini hanya valid untuk gelombang yang dibangkitkan oleh sistem cuaca lokal, dan dengan asumsi ada cukup waktu untuk keberadaan fully develoved sea.
Tinggi gelombang absolut kurang penting untuk para pelaut dibandingkan kecuramannya (H/L). kebanyakan gelombang yang dibangkitkan oleh angin mempunyai kecuraman dalam orde 0,03 – 0,06. Gelombang yang lebih curam dari kisaran tersebut dapat menyebabkan masalah untuk kapal, tetapi untungnya kecuraman gelombang jarang melebihi 0,1. Secara umum kecuraman gelombang berkurang dengan meningkatnya panjang gelombang. Gelombang yang berombak pendek yang dibangkitkan dengan cepat oleh angin lokal yang keras biasanya tidak menyenangkan untuk kapal-kapal kecil karena gelombangnya curam walaupun tidak tinggi. Di laut terbuka gelombang yang sangat tinggi biasanya berjalan dengan sedikit gangguan karena panjang gelombang yang relatif panjang.
Gambar 5. Skala Beaufort

Sumber : http://staff.unila.ac.id